बैजीक राशीवरील महत्वाची सूत्रे
- a×a = a2
- (a×b) + (a×c) = a (a+c)
- a × b + b = (a+1) × b
- (a+b)2 = a2 + 2ab + b2
- (ab)2 = a2 + 2ab + b2
- a2-b2 = (a+b) (ab)
:: a2-b2 / a+b = ab a2-b2/ab = a+b
:: (a+b)3 / (a+b)2 = a+b (a+b)3 / (ab) = (a+b)2
:: (ab)3 / (a+b)2 = (ab) (ab)3 / (ab) = (a+b)2 - a3 – b3 = (ab) (a2 + ab + b2)
- a × a × a = a3
- (a×b) (a×c) = a (bc)
- a × b- b = (a-1) × b ;
:: a2 + 2ab + b2 / a+b = (a+b)
:: a2 2ab + b2 / ab = (ab) - (a+b)3 = a3 + 3a2b + 3ab2 + b3
- (ab)3 = a3 3a2b + 3ab2 + b3
- a3 + b3 = (a+b) (a2-ab+b2)
:: a3+b3 / a2-ab+b2 = (ab)